A long time monitoring of the beacon F1ZMT in JN07CX via Aircraft Scatter on 1296.872 MHz shows asymmetrical reflections on most of the crossing planes.
As the distance to the beacon is 624 km and it´s ERP of just 10 W (a panel antenna to the south combined with an omnidirectional big wheel) is rather QRP, only weak reflections can be detected from time to time. This ensures, that received signals were reflected on single airplanes. In this example can be seen, that the reception starts shortly before the plane crosses the path between DJ5AR in Mainz and F1ZMT in LeMans. Unexpectetly the signal can be seen for quite a while after crossing. There is a continuous variation of the doppler shift and no spread of the signal, as is usual for a moving solid reflector.
The monitoring of distant beacons can be a boring job, even when using the waterfall diagram of a SDR. I prefer SpecJT of the WSJT package in JT65c mode. It is much more sensitive and even at slow speed faint refections can be seen clearly.
The example shows F1ZMT in JN07CX, 624 km from Mainz. The beacon operates 10 W into an omnidirectional antenna on 1296.872 MHz. The reflections in the screenshot were caused by 3 airplanes crossing the path one after the other.
On April 7th the PI9CAM team hosted some students, working on a film project. So there was some spare time to schedule more tests in our space debris project. The objects, selected to try on, were some rocket bodies. Many of the larger objects in low earth orbits are of this type. The operation style, as usual, was a center frequency of 1,296.300 MHz, 15 seconds periods with DJ5AR transmitting first. This time we wanted to try FSK441 mode, to compare it with the experiences, we had with ISCAT-B.
On two objects, NORAD #39679 (SL-4 R/B) and #39771 (H-2A R/B) we registered faint but continuous reflections. Only partial decodes were possible. It seems, that ISCAT-B is the better choice.
Reflections of DJ5AR in FSK441 recorded at PI9CAM
On SL-4, a russian rocket body, lauched on April 16th, 2014, a modulation of the reflections with a period of 2.8 seconds could be observed. It looks like, as the object is tumbling.
As EA2TZ/B is one of the widely observed beacons, it had been missed during the last months. Now it is back on air again after adding some improvements, as Josemi, EA2TZ, informed today.
Details:
Callsign: EA2TZ/B
QRG: 1296.855MHz
Power: 10 W
Locator: IN93BF88cp ( N 43º14,69´ W001º50,95´ )
Altitude (m): 653 m asl.
Antenna: 2 x Big Wheel (omnidirectional)
If the beacon can be heard, please spot it and don´t forget to add the “/B” to the callsign.
Since QSOs via ISS Bounce are quite easy to perform, Jan, PA3FXB, and I evaluated the possibilities, to use other objects in orbits around the Earth. The table below shows a selection of objects in earth orbits. There are some quite big ones in geostationary orbits, but the distance is the most limiting factor, not the size, as can be seen in the predicted maximum reception level provided by the radar equation. So I had an intense survey on the objects in low orbits and determined the maximum linkbudgets, to filter the most promising ones. My PC had to work a couple of hours to perform that. On the end it has been a little surprise, that COSMOS 1823, an old soviet geodetic satellite, wasn´t among them. We used it for previous tests and were able to detect faint reflections.
At our meeting on the Dorsten GHz Convention last Saturday, we discussed latest details. On Sunday, Jan and the crew of PI9CAM activated the Dwingeloo Telescope for the 23 cm EME SSB contest, but they had some spare time for other experiments. Just to warm up we had a nice SSB QSO via the moon first, right after their first QSO PA/JW: Congratulations!
H-2A (39771)
Some of the top objects would pass on suitable elevations and we decided to start with NORAD 39771 which is the second stage of a japanese H2A202 rocket, launched on May, 24th 2014 with a radar cross section of 20.7 m². DJ5AR was to transmit CW continously, while PI9CAM checked for reflections. After some trouble with the tracking they caught it shortly before set.
The used power at DJ5AR was 150 W into a 3 m dish (28 dBi) and the PI9CAM team used their 25 m dish (48 dBi) for reception.
The predicted signal level was about -158 dBm, but, as can be heard, it´s clearly audible.
Titan 4B (26474)
Next one on the list was NORAD 26474, the 2nd stage of an american Titan 4B rocket, launched on August 17th, 2000. With a radar cross section of 15.4 m² it is a little smaller than H-2B. But the predicted reception level for Dwingeloo looked very promising anyway:
My signal could be picked up by PI9CAM when the rocket body rised up to 5 degrees over the horizon and they tracked it for about 4 minutes until I lost the object near the culmination point, when the angle velocity became too fast for my tracking system.
DJ5AR as received by PI9CAM. Picture is upside down for better matching to the table.
The signal has been detected at an predicted signal level of -160 dBm and became clearly audible soon for serveral minutes. So we can think of trying a CW QSO next time. The drift, which can be seen, has it´s cause in my transmitter, running for the duration of the whole pass without any pause. I will try to reduce the growing spread of the signal by using shorter intervals in the doppler correction.
Marten, PA3EKM, documented this (historical) moment on video:
Many thanks to the team of PI9CAM / CAMRAS: Cor, PE0SHF, Eene, PA3CEG, Marten, PA3EKM, Gert-Jan, PE1GJV, and Jan, PA3FXB
The first remarkable opening for quite a long time happened from 10th to 11th of February 2015. F5LENs refractive index forecast promised good conditions for these days. It started with some stations from G, appearing on 2 m. While the activity contests were going on in Scandinavia and the UK on 70 cm, a few operators dropped into the microwave chat. At least two new DXCCs could be worked before going to bed: Steward, GM4AFF in IO86TS and Gordon, GI6ATZ in IO74AJ as no. 30 and no. 31 on 23 cm. Only a few beacons could be heard via tropo: GB3FM in IO91OF, GB3MHZ in JO02PB, PI7ALK in JO22IP, OZ5SHF in JO45VX and OZ1UHF in JO57GH as a new one.
Green: Stations worked on 23 cm Red: Beacons heard on 23 cm
In the morning the inversion had moved to the north-east and never before heard beacons from Sweden became audible on 23 cm. SK6UHI in JO57TX, SK6MHI in JO57TQ, SK6UHI in JO97CJ and SK4BX in JO79LI over 1138 km as my new beacon ODX appeared on the band. Many of the Swedish stations were as loud here as locals. Some of them could be worked on 13 cm as well.
January 15th, 2015On February 21st, 2015 Jan, PA3FXB, and I will give a lecture in Dorsten at the GHz convention. It will be held in german and partly in english and is basing on the former lectures “Let´s Bounce”.
We will talk about unusual use of Aircraft Scatter and our experiences using ISCAT. Two years ago the idea, to try ISS Bounce, was born and discussed in Dorsten. We will show what we have done in the meantime in practising this propagation mode.
Jan, PA3FXB, and I skeduled a very special ISCAT test on 23 cm for today. The CAMRAS team had planned to operate PI9CAM with the 25 m radiotelescope in Dwingeloo for some astronomical experiments this afternoon. Before starting with that, we used an ISS pass with low elevation to try ISS bounce with the big dish. Such a pass ensures slow variation of azimuth end elevation angles, which is essential to track moving object like the ISS (or other spacecrafts in low orbits) with an antenna of a weight of 120 tons.
We had very strong reflections right from the beginning, but no decodes. Maybe the signal level was to high? This has to be investigated. Then we changed to aircraft scatter, although the dish had to be kept elevated at 10° by safety reasons, I got strong reflections from airplanes quite close to PI9CAM. Not as strong as from the ISS, but decodable now and it was possible to work in CW too.
Despite the fact, we had no QSO via ISS bounce, we learnt, that it is possible to track objects in low orbits with the 25 m radiotelescope, as long as the elevation keeps low. This opens up a perspective to make use of other spacecrafts as reflectors.
Jan, PA3FXB, and I were discussing the use of digimodes on ISS bounce for quite a while. Today we tried it with ISCAT-B and were successful with the first shot. As in the tests with Ronald, ON7FLY, on AS, we used 15 seconds periods.
From the moment on, traces could be seen in the waterfall diagram, decodes were possible.
When the ISS culmiated and the variation of the dopplershift was fastest, the frequency correction came to its limits. But while I am used to ISCAT in the meantime, I needed no decodes to hear, that Jan was transmitting RRRRs.
At least I decoded a 73 from him. The experiences with ISCAT in ISS bounce are very promising, although the 15 seconds periods are too long. So we have to discuss it and try with shorter ones.
Inspired by an article, published by Rex, VK7MO, and David, VK3HZ, in the latest DUBUS [1], Ronald, ON7FLY, and I performed a first test in using ISCAT-B mode (by K1JT) for aircraft scatter on 23 cm. When looking on AirScout it doesn´t seem to be very challenging to have an QSO. But Ronald is obstructed by a hill in eastern directions and he didn´t expect to have an opportunity to work eastwards on 23 cm at all.
Ronald is located in JO10LT and the distance is just 388 km. He uses a 44 element yagi with only 2 W at the feedpoint. On my side a 3 m dish and 150 W are in use. First of all we tried in SSB and were able to complete a QSO after a while. I could copy ON7FLY very weak, but readable. Then we tried in ISCAT-B with 30 seconds periods and it was amazing to see, that Ronald´s signal could be decoded even when only traces appeared in the spectrum.
His signal can be seen in the center section (The drop outs are reactions of the AGC on radar noise). The above sequence could be decoded to:
Since the periods of 30 seconds were far too long, we needed certain airplanes to complete. then we tried FSK441 with no decodes and switched to JT6M and completed the third QSO. In the meantime I found a hint in the above mentioned article, how to reduce the T/R periods to 15 seconds. So we completed a fourth QSO in ISCAT-B again in shortest time:
[1] Rex Moncur, VK7MO, David Smith, VK3HZ, Aircraft Scatter on 10 and 24 GHz using ISCAT: DUBUS Vol. 43 4/2014